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History: topological invariants in physics
(I) Inertia tensor of rigid bodies

(II) vortices in superconductors
(III) Quantum Hall effect in a 2D electron gas: Hall steps
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Topological materials: essential features

- two (or more) bands

- singular wavefunction
- topological invariants (e.g. quantized Hall conductivity)

prototype for topological materials: graphene
graphene is a semimetal but not a topological material

Which mechanisms can make graphene a topological material?

strong homogeneous magnetic field
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Graphene: quantized Hall conductor without homogeneous
magnetic field

K’K

– periodic magnetic flux and nearest-neighbor hopping
(Haldane, PRL ’88)

– spin-orbit coupling
(Kane/Mele, PRL ’05)

– localized spins (spin texture)
(Hill/Sinner/Z, New Journ. Phys. ’11)

– time-periodic driving (Floquet topological insulators)
(Lindner/Refael/Galitski, Nature Phys. ’11)

– electron-phonon interaction
(Sinner/Z, Annals of Phys. ’19)
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Topological materials in Nature

Database:

“Out of 26938 stoichiometric materials ... [there are] 2861
topological insulators (TI) and 2936 topological semimetals ”

M.G. Vergniory, L. Elcoro, C. Felser, B.A. Bernevig, Z. Wang
The (High Quality) Topological Materials In The World
arXiv:1807.10271 (1958 pages and 4989 figures!)



Spectrum vs. wavefunction I
Haldane’s or Bernevig-Hughes-Zhang (BHZ) model
Hamiltonian with Pauli matrices

HBHZ =

(
k1σ1 + k2σ2 + mσ3 0

0 k1σ1 − k2σ2 ±mσ3

)
doubly degenerate eigenvalues do not depend on the signs of k2

and m:
Ek1,k2 = ±

√
k2 + m2

reason: transformation properties of H

(k1σ1 − k2σ2 + mσ3)T = k1σ1 + k2σ2 + mσ3

and
σ1(k1σ1 − k2σ2 −mσ3)σ1 = k1σ1 + k2σ2 + mσ3

The determinant det(H − λσ0) is invariant

There is more information in the wavefunction!
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Spectrum vs. wavefunction II

eigenfunctions of k1σ1 + k2σ2 + mσ3:

Ψ±(k2) =

(
1

−m±
√
k2+m2

k1−ik2

)
=

(
1

−m±
√
k2+m2

k e iφ

)

wavefunction has a pole at k1 − ik2 = 0 for m 6= 0!

eigenfunctions of k1σ1 − k2σ2 + mσ3:

Ψ±(−k2) =

(
1

−m±
√
k2+m2

k1+ik2

)
=

(
1

−m±
√
k2+m2

k e−iφ

)

the wavefunctions have a different chirality
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Graphene with periodic flux

effective flux created by a spin texture
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Graphene with periodic flux

flux on the spin-occupied triangular sublattice
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Graphene with periodic flux: phase diagram
φ-m phase diagram

σxy = ν
e2

h
, σxx ∝ µ

e2

h
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Topological states in photonic metamaterials

Dirac photons on finite 2D geometries:

Maxwell equations −→ HDirac = iσx∂x + iσy∂y + mσz



Topological states in photonic metamaterials

2D electromagnetic field

E =

(
E1

E2

)
=

(
ER
z + HR

z

EL
z + HL

z

)

Stokes parameters

– intensity I = E · E

– polarization

P =
1

I

E · σxE
E · σyE
E · σzE

 |P|2 = 1
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Topological states in photonic metamaterials
1) uniform Dirac mass

a b

a) two edges:

E =

(
K0(r̄)

−ie iαsgn(m) K1(r̄)

)
, P = −2sgn(m)

K0(r̄)K1(r̄)

r

(
−y
x

)

b) one edge:

E =
1√
2

(
e−iα/2

−ie iα/2sgn(m)

)
e−|m|r√

r
, P = −sgn(m)

(
−y
x

)
e−2|m|r

r2
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Topological states in photonic metamaterials II

2) non-uniform Dirac mass

a b

− − ++

a) two edges:

P = P(r̄)

(
−y
x

)

b) one edge:

P = sgn(mi )

(
−y
x

)
e−2|mi ||r−r0|

r2



Topological states in photonic metamaterials II

2) non-uniform Dirac mass
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topological states in photonic metamaterials III

polarization of 2a) with two edges: “Skyrmion”
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Theory of deformations: a gauge-field approach

classical elasticity theory & quantum theory of electrons

~pe → ~pe +
e

c
~A

~A is not unique (gauge invariance!)
physical quantity: ∇× ~A

different levels of approximation:
a) classical electrons & classical deformations
b) quantum electrons & classical deformations
c) quantum electrons & quantum deformations (aka phonons)

examples:
a): classical elasticity theory
b): uniform strain
c): electron-phonon interaction



Graphene-like materials: effect of strain

strain

t
1

t t

bonds: t1 ≥ t relevant bond ratio: t1/t



Graphene-like materials: effect of strain

changing t1/t = 1→ 2

Ekx ,ky : ±k ±
√

k4
x

4m2
+ c2k2

y



Graphene-like materials: effect of strain

changing t1/t = 1...2.25: the spectrum
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a gap opens for t1/t > 2
reminiscent of Landau level formation



Graphene-like materials under strain: transport properties

changing t1/t = 1...2: the conductivity in x and y direction
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saddle points



Graphene-like materials: electron-phonon interaction

e
1

e
2

e
3

electronic Hamiltonian

H0 = −t
∑
〈rr ′〉

(c†r dr ′ + d†r ′cr )

electron-phonon Hamiltonian

H2 =
∑
〈rr ′〉

{~ωb†rr ′br ′r + α(b†rr ′c
†
r dr ′ + br ′rd

†
r ′cr )}



Graphene-like materials: electron-phonon interaction

Phonon bands predicted by bandstructure calculations for graphene
(Basko et al., PRB)



Graphene-like materials: electron-phonon interaction

Functional integral approach: partition function

Z = Tre−βH =

∫
exp{−S[ψ̄, ψ,A]} D[ψ̄, ψ,A]

action (x = (r, t))

S[ψ̄, ψ,A] =
1

2g

∫
A2
µ d3x +

∫
ψ̄[γµ∂

µ + m +
i√
2
γµA

µ]ψ d3x

phonons represented by an effective gauge field Aµ

after ψ integration: effective phonon model

S[ψ̄, ψ,A]→ S[A] =
1

2g

∫
A2
µ d

3x−tr log

[
γµ∂

µ + m +
i√
2
γµA

µ

]



Saddle-point approximation

Saddle-point integration:
mean-field approximation + quantum fluctuations
a) saddle point (variational) condition

δAS[A] = 0

with uniform solution A0

b) fluctuations around the saddle point

S[A0 + Q] ∼ S∆[A0] + SCS [Q] + SM [Q]

where the Chern-Simons action

SCS [Q] = −2
∑
λ

Cλ
∑
µ,µ′

εµµ′λ

∫ (
∂Qxµ

∂xλ
Qxµ′ − Qxµ

∂Qxµ′

∂xλ

)
d3x

exists for a system which is neither symmetric nor antisymmetric
under parity transformation



Graphene-like materials: electron-phonon interaction

mean-field approximation: effective electronic Hamiltonian

H0: hopping on the honeycomb lattice

spontaneous symmetry breaking for g > gc :

– phase with modulated strain

H0 + i∆
∑
r

cos(G · r)c†r dr + h.c . , G = K−K′

– Haldane phase

H0 + im
3∑

j=1

∑
r

(c†r+cj
cr − c†r−cj cr − d†r+cj

dr + d†r−cjdr)

1) order parameters m and ∆ break the time-reversal symmetry!
2) both order parameters create a spectral gap!
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Graphene-like materials: electron-phonon interaction

mean-field action
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Haldane (m) phase for a single Dirac node
interaction creates two phonon bands with dispersions

~ω → ε±(p) =
√

f (p)± t(p)

where (a ∝ 1/|m|, b = const.)

f (p) =
1

2

(
p2 + 2

∆

a
+

b2

a2

)
, t(p) =

1

2

√(
p2 +

b2

a2

)2

+ 4
∆

a

b2

a2
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Linear response to an external field qν

current:
jµ = ψ̄γµψ

external field qν couples to the current
∫
qν jνd

3x in the action

〈jµ〉q − 〈jµ〉0 ∼ qν
∂2

∂qν∂qµ
logZ = qν〈jµjν〉0

which implies the conductivity tensor

σµν =
〈jµ〉q − 〈jµ〉0

qν
= 〈jµjν〉0



transport properties
from

〈...〉 =
1

Z

∫
D[ψ̄, ψ,A]... exp{−S[ψ̄, ψ,A]}

we obtain the Hall conductivity for µ 6= ν

σµν =
2π

ω

∫
d3x e−iωτ 〈(ψ̄γµψ)x(ψ̄γνψ)0〉

= − 4π

ωg2

∫
d3x e−iωτ 〈Qµ,xQν,0〉

Chern-Simons action gives quantized Hall plateaux with

Cλ =
im

3

∫
k2

(m2 + k2)3
d3k ∼ iπ

12
sign(m)

one Dirac node

σ12 =
1

2
sgn(m)

e2

h

two Dirac nodes

σ12 = sgn(m)
e2

h



Conclusion

I topological invariants due to singularities of the wavefunction

I uniaxial strain moves the Dirac nodes and opens a gap

I electron-phonon interaction: spontaneous Dirac mass creation

I two Dirac nodes get masses with opposite sign

I Chern-Simons action provides quantized Hall plateaux

Outlook

I new phases for double layers with excitons?



topological materials: essential features III
– two electronic (photonic) bands

-2π/(3√3) 

2π/(3√3) k1

0 k2

 0

 0.5

 1

 1.5

 2

 2.5

 3

topological invariants in transport


