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() Inertia tensor of rigid bodies
() vortices in superconductors
(I11) Quantum Hall effect in a 2D electron gas: Hall steps
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Topological materials: essential features
- two (or more) bands

- singular wavefunction
- topological invariants (e.g. quantized Hall conductivity)

prototype for topological materials: graphene
graphene is a semimetal but not a topological material

Which mechanisms can make graphene a topological material?

strong homogeneous magnetic field
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Graphene: quantized Hall conductor without homogeneous

magnetic field

— periodic magnetic flux and nearest-neighbor hopping
(Haldane, PRL '88)
— spin-orbit coupling
(Kane/Mele, PRL '05)
— localized spins (spin texture)
(Hill/Sinner/Z, New Journ. Phys. '11)
— time-periodic driving (Floquet topological insulators)
(Lindner/Refael /Galitski, Nature Phys. '11)
— electron-phonon interaction
(Sinner/Z, Annals of Phys. '19)



Topological materials in Nature

Database:

“Out of 26938 stoichiometric materials ... [there are] 2861
topological insulators (TI) and 2936 topological semimetals "

M.G. Vergniory, L. Elcoro, C. Felser, B.A. Bernevig, Z. Wang
The (High Quality) Topological Materials In The World
arXiv:1807.10271 (1958 pages and 4989 figures!)
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doubly degenerate eigenvalues do not depend on the signs of k»
and m:
Ekl,kz =+vVk2+ m?
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Haldane's or Bernevig-Hughes-Zhang (BHZ) model
Hamiltonian with Pauli matrices

H . kio1 + kooo + mos 0
BHZz = 0 k10’1 —k20'2im0'3

doubly degenerate eigenvalues do not depend on the signs of k»
and m:
Ekl,kz =+vVk2+ m?

reason: transformation properties of H

(k10'1 — kooo + mo3)T = kio1 + koo + mo3

and
Ul(klUl — koop — ma3)01 = kio1 + koop + mos

The determinant det(H — Aog) is invariant

There is more information in the wavefunction!
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eigenfunctions of kio1 + kooo + mos:

1 1
V. (k) = (_ mik\/k2k+m2> = (_ m:l:\/k2+m2ei¢>>
1—iko k

wavefunction has a pole at k3 — ikp = 0 for m # 0!

eigenfunctions of ko1 — koo + mos:

1 1
Vi(—ke) = (_ m:l:\/k2+m2> = (_ m+/k2+m? equ)
ki+iko k

the wavefunctions have a different chirality



Graphene with periodic flux

effective flux created by a spin texture




Graphene with periodic flux

flux on the spin-occupied triangular sublattice
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Graphene with periodic flux: phase diagram
¢-m phase diagram
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Topological states in photonic metamaterials

Dirac photons on finite 2D geometries:

A8 A

AT

U

Maxwell equations — Hpjrac = i0x0x + io, 0y + mo,



Topological states in photonic metamaterials

2D electromagnetic field
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Topological states in photonic metamaterials

2D electromagnetic field
E_ (B _ (Ef+H
E; ELf+ HL
Stokes parameters

—intensity | = E-E

— polarization



Topological states in photonic metamaterials
1) uniform Dirac mass

a) two edges:

e (LS ) = () R ()

—ie'“sgn(m) Ki(r) r X



Topological states in photonic metamaterials
1) uniform Dirac mass

a) two edges:

:( ~ Ko(7)
—ie'“sgn(m) Ki(r)

b) one edge:

) . P sl S ()

1 ef,'a/z e—\m|r —y e—2|m\r
E= E <—ieia/25gn(m)) \/F 5 P= —Sgn(m) < « ) T



Topological states in photonic metamaterials ||

2) non-uniform Dirac mass

a) two edges:
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2) non-uniform Dirac mass

a) two edges:

b) one edge:
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topological states in photonic metamaterials Il

polarization of 2a) with two edges: “Skyrmion”
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nonzero Berry curvature!



Theory of deformations: a gauge-field approach

classical elasticity theory & quantum theory of electrons

e -

I_je—>l3e+EA

A is not unique (gauge invariance!)
physical quantity: V x A

different levels of approximation:

a) classical electrons & classical deformations

b) quantum electrons & classical deformations

c) quantum electrons & quantum deformations (aka phonons)

examples:

a): classical elasticity theory
b): uniform strain

c): electron-phonon interaction



Graphene-like materials: effect of strain

t t
@ij strain CO

bonds: t; > t relevant bond ratio: t;/t




Graphene-like materials: effect of strain

changing t;/t =1 — 2

Ekx,ky : +k + > + C2k3



Graphene-like materials: effect of strain

changing t;/t = 1...2.25: the spectrum

0.8 r

E/t

0.4}

paSCCal

P

B

bbbttt

0.2 0 0.2
ax
Ky /Ky

a gap opens for t/t > 2
reminiscent of Landau level formation




Graphene-like materials under strain: transport properties

changing t;/t = 1...2: the conductivity in x and y direction
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divergent conductivity reflects the van Hove singularity at the
saddle points



Graphene-like materials: electron-phonon interaction

electronic Hamiltonian
Hy = —tz (c/d,, + dj,c,)
(rr’)

electron-phonon Hamiltonian

H2 = Z{hwbjr[r/br’r + a(bJr der’ + bl‘/fdjlcr)}

rr’
(rr’)



Graphene-like materials: electron-phonon interaction

Phonon bands predicted by bandstructure calculations for graphene
(Basko et al., PRB)
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Graphene-like materials: electron-phonon interaction

Functional integral approach: partition function
2= Tre ™ = [ exp{-5[5. v, Al} DI, A

action (x = (r, t))

Sl 9, Al = /A2 d3x+/ Plyud" + m+ \ﬁ’m/\“]iﬁ d3x

phonons represented by an effective gauge field A,

after ¢ integration: effective phonon model

1 2 3
S[Y, ¢, Al — S[A] = g/A d”x—trlog [’mf)“—i—m—i—ﬁ'yu/\“



Saddle-point approximation

Saddle-point integration:
mean-field approximation 4+ quantum fluctuations
a) saddle point (variational) condition

5AS[A] =0

with uniform solution Ag
b) fluctuations around the saddle point

S[Ao + Q] ~ Sa[Aol + Scs[Q] + Sml Q]

where the Chern-Simons action

0Qx 0Qxy
SCS[Q] = _2ZC)‘ZEH”/)‘/ (8()?()\“@&“’ - pr, 8(3(; ) d®x

A !

exists for a system which is neither symmetric nor antisymmetric
under parity transformation



Graphene-like materials: electron-phonon interaction

mean-field approximation: effective electronic Hamiltonian
Hp: hopping on the honeycomb lattice

spontaneous symmetry breaking for g > g:

— phase with modulated strain

Ho+iAY cos(G-r)cidi+hc., G=K-K
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Graphene-like materials: electron-phonon interaction

mean-field approximation: effective electronic Hamiltonian
Hp: hopping on the honeycomb lattice

spontaneous symmetry breaking for g > g:

— phase with modulated strain

Ho+iAY cos(G-r)cidi+hc., G=K-K
r
— Haldane phase
3
Ho + imZ Z(Cj+cjcr — (::r_cjcr — dlrcjdr + d:r_cjd,)
=1

1) order parameters m and A break the time-reversal symmetry!
2) both order parameters create a spectral gap!



Graphene-like materials: electron-phonon interaction

mean-field action
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Haldane (m) phase for a single Dirac node
interaction creates two phonon bands with dispersions

hw — €,.(p) = Vf(p) £ t(p)

where (a < 1/|m|, b = const.)

1 A B2 1 B2\? A2
flp)== (P +2=+ = =\ (PP+ =) +té4-=
(p) 2<p + a+32) , t(p) 2\/<p +a2> A
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Linear response to an external field g,

current:
Ju =0V
external field g, couples to the current fq,,jl,d3x in the action
. . 0? ..
Unda = Uudo ~ W Sandan log Z = qu (jiuv)o

which implies the conductivity tensor

0 = Unda = Uu)o - — Uno _ — Gui)o



transport properties
from

)= 5 [ DI AL expl=S1D. v, A}

we obtain the Hall conductivity for p # v

Gy =1 / Bx e () (T 1))

— 47T d3X e—le<Q Q >
wg

Chern-Simons action gives quantized Hall plateaux with
im k2 iT
Cy=— [ — Bk~ si
AT 3 / (m? + K2)3 1psien(m)
one Dirac node

1 e2
012 = §5g”(m)?

two Dirac nodes

o2
012 = sgn(m)?




Conclusion

» topological invariants due to singularities of the wavefunction

P uniaxial strain moves the Dirac nodes and opens a gap

> electron-phonon interaction: spontaneous Dirac mass creation

» two Dirac nodes get masses with opposite sign

» Chern-Simons action provides quantized Hall plateaux
Outlook

» new phases for double layers with excitons?

J S FJuIian Schwinger
Foundation




topological materials: essential features IlI
— two electronic (photonic) bands

-2m/(3V3)
Ky 2m/(3V3)

topological invariants in transport



