

Present status of polaritonic nonlinearities in planar III-nitride microcavities

Raphaël Butté

Institute of Condensed Matter Physics ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, SWITZERLAND

Motivations

Fundamental:

Study of bosonic condensation phenomena up to room temperature

Applied:

Achieve room temperature electrical injection of cavity polaritons characterized with an ultra-low effective mass

 \Rightarrow Low threshold "lasers" without population inversion

A. Imamoglu et al., PRA <u>53</u>, 4250 (1996)

- \bullet Polariton condensation in planar microcavities: role of the detuning δ and temperature
- Impact of biexcitons on the relaxation mechanisms of polaritons
- A few hints on renormalization effects in III-nitride microcavities
- Conclusion and perspectives

Polariton nonlinearities in planar microcavities

- Relaxation bottleneck to overcome
- Key role of cavity photon lifetime to achieve spontaneous condensation
- Large QW number to reduce the exciton density per well

• Temperature-dependent optimum δ but limited ΔT range accessible

¹E. Wertz et al., APL <u>95</u>, 051108 (2009);
²J. Kasprzak et al., PRL <u>101</u>, 146404 (2008)

4

Planar III-N microcavity for polariton studies

Large QW number to increase Rabi splitting

1- Fourier PL setup: Ar⁺ (244 nm, cw) or Nd:YAG (266 nm, quasi-cw)

X-Y stage

2- Time-resolved PL setup: Ti:sapphire (280 nm, 2 ps) + monochrom. + streak camera

Temporal evolution of the PL at $k_{//} = 0$

Polariton condensation phase diagram

(δ , *T*, *P*_{thr}) diagram¹⁻²

-33 -27 -20 -13 -7 0 7 13 20 27 33 Angle (degree)

-33 -27 -20 -13 -7 0 7 13 20 27 33 Angle (degree)

Thermalized population in the vicinity of the ground state with T_{eff} = 300 ± 10 K \Rightarrow signature of nonequilibrium polariton BEC at room temperature

ESF polaritonics, Rome, March 22 2012

Large negative detuning and low temperature

- inefficient polariton relaxation
- → increasing threshold (kinetic regime)

Less negative detuning and elevated temperatures

- enhanced scattering efficiency
- → decreasing threshold (toward/or thermod. regime)

Competition between kinetic and thermodynamic condensation regimes: impact of phonon scattering term \Rightarrow shift of $\delta_{opt}(T)$ toward more negative δ values with increasing $T(K)^{1-2}$

 \bullet Polariton condensation in planar microcavities: role of the detuning δ and temperature

- Impact of biexcitons on the relaxation mechanisms of polaritons
- A few hints on renormalization effects in III-nitride microcavities
- Conclusion and perspectives

Dark excitons in real multiple QW microcavities

Exciton and biexciton dynamics

Observation of "cavity biexcitons"

Do biexcitons play a role in the relaxation mechanisms of polaritons?

Biexciton luminescence in the full cavity

LPB relaxation dynamics

Enhanced relaxation efficiency

GaAs, CdTe and GaN

Increased LP relaxation efficiency when $E_X - E_{LPB}(k_{//} = 0) = \hbar \omega_{LO}$

GaN only

Increased LP relaxation efficiency when $E_{XX} - E_{LPB}(k_{//} = 0) = \hbar \omega_{LO}$

Extra polariton relaxation channel mediated by cavity biexcitons

 \bullet Polariton condensation in planar microcavities: role of the detuning δ and temperature

- Impact of biexcitons on the relaxation mechanisms of polaritons
- A few hints on renormalization effects in III-nitride microcavities
- Conclusion and perspectives

Renormalization of polariton branches: the standard picture

Renormalized dispersion curve

$$\tilde{E}_{LPB/UPB}(k_{//},\delta,n) = \frac{1}{2} \Big[E_{c}(k_{//}) + E_{x}(k_{//}) + \delta E_{x}(n) \Big] \\ -\frac{1}{2} \sqrt{(E_{c}(k_{//}) - E_{x}(k_{//}) - \delta E_{x}(n))^{2} + 4g^{2}(n)}$$

Nearly rigid blueshift of LPB and predicted linear shift of the LPB ground state with n

Renormalization of polariton branches: experimental facts

- Nearly no change observed at large $k_{//} \Rightarrow$ saturation is the dominant renormalization effect
- $\Omega_{\rm VRS}$ extracted from coupled oscillator model with constant E_X and E_C values
- Ω_{VRS} decreased by 20% between 0.15 and 1 P_{thr}

Renormalization of polariton branches: impact of δ and T

- Saturation effects seem to decrease with increasing δ values!
- Slow down of $\Omega_{\rm VRS}$ decrease when crossing P_{thr}
- Blueshift at $k_{//} = 0$ showing a clear deviation from linearity for T < 200 K
- Possible role of biexcitons (E^b_{XX} ~ 22 meV) in a system dominated by saturation effects (GaAs model not applicable)

 \Rightarrow several remaining open questions likely due to specificities of saturation effects in a system with small a_B^{2D} !

Conclusion and perspectives

- Polariton condensation phase diagram from 4 to 340 K in GaN MQW microcavity (access to kinetic and thermodynamic relaxation regimes)
- Experimental signature of biexciton-mediated polariton relaxation
- Anomalous renormalization behavior (sublinear blueshift of LPB), key role of saturation effects + biexcitons?
- Study the properties of polariton condensates over a wide range of temperatures including renormalization, biexcitonic effects
- Electrical injection of polaritons in III-N microcavities (Marlene Glauser)
- System a priori suitable for (i) investigating ultrafast OPA and OPO properties @ 300 K (solitons?), (ii) realizing coherent THz light emitters (nonpolar microcavities)

Acknowledgments

- PhDs: J. Levrat, G. Rossbach, M. Glauser, G. Christmann (Cambridge, UK)
- Post-docs: Drs. M. Cobet, E. Feltin (Novagan)
- Prof. N. Grandjean and Dr. J.-F. Carlin

- Drs. G. Malpuech and D. D. Solnyshkov, Clermont University/CNRS (F)
- Prof. B. Deveaud-Plédran, Drs. P. Corfdir (Cambridge, UK) and J.-D. Ganière (EPFL)

Schweizerischer Nationalfonds Fonds national suisse Swiss National Science Foundation

Thank you for your attention!

Enhanced relaxation efficiency

