UNIVERSAL INFRARED ABSORBANCE IN GRAPHENE, SILICENE AND GERMANENE

Olivia Pulci

Department of Physics, University of Rome Tor Vergata and ETSF, NAST, MIFP, CNR-ISM

Fine Structure Constant Defines Visual Transparency of Graphene

R. R. Nair,¹ P. Blake,¹ A. N. Grigorenko,¹ K. S. Novoselov,¹ T. J. Booth,¹ T. Stauber,² N. M. R. Peres,² A. K. Geim¹* 6 JUNE 2008 VOL 320 SCIENCE www.sciencemag.org

α=e²/ħc~ 1/137

Graphene: experimental findings

Graphene Absorbance A~1-T~2.3%

$$\hat{H} = v_F \vec{\sigma} \cdot \vec{p} = v_F \vec{\sigma} \cdot (\hat{p} - \frac{e}{c} \vec{A}) = \hat{H}_0 + \hat{H}_{int}$$

A=
$$W_a/W_i = \pi e^2/\hbar c = \pi \alpha = 0.023$$

 α = 1/137.036=fine structure constant

What about other 2D systems?

Silicene: does it exist!?

Silicene: The discovery of graphene-like two-dimensional silicon

Patrick Vogt^{*a,b*},* Paola De Padova^{*c*},[†] Claudio Quaresima^{*a*}, Jose Avila^{*d*}, Emmanouil Frantzeskakis^{*d*}, Maria Carmen Asensio^{*d*}, Andrea Resta^{*a*}, Bénedicte Ealet^{*a*}, and Guy Le Lay^{*a,c*}

FIG. 3. a) ARPES intensity map for the clean Ag surface (left) and after formation of the 2D Si ad-layer, taken along the Ag $\overline{\Gamma}$ - \overline{K} direction through the silicene \overline{K} point.b) Brillouin-zone (BZ) scheme of the 2D Si layer with respect to the Ag(111) 1 × 1 surface. The red arrow indicates the ARPES measurement direction.

FIG. 4. Construction of the atomic structure model for the 2D Si ad-layer. Filled states STM images of a) the initial clean Ag(111)1 × 1 surface ($U_{bias} = -0.2$ V, I = 1.93 nA) and b) the (4 × 4) silicene sheet ($U_{bias} = -1.4$ V, I = 0.29 nA). c) Model of silicene on Ag(111), Si-atoms sitting on top of Ag-atoms are highlighted as bigger orange balls, resembling the measured STM image. In the bottom right corner the ball-and-stick model for the free-standing silicene layer is shown with a Si-Si distance of 0.22 nm.

Si on-top of a Ag atom

Si between Ag atoms

Ag atom

Graphene!

No buckling

silicene

germanene

Buckling Δ = 0.45 A

Buckling Δ = 0.69 A

TABLE I. Bond lengths d and buckling amplitude Δ for group-IV honeycomb crystals. The Fermi velocity v_F is also listed.

	С	Si	Ge
d (Å)	1.424	2.232	2.341
Δ (Å)	0.00	0.45	0.69
$v_F \ (10^6 {\rm m/s})$	0.829	0.532	0.517

ELECTRONIC BAND STRUCTURES

Silicongraphene (2D SiC)

P. Gori, O. Pulci, M. Marsili, F. Bechstedt, APL 2012

No buckling....

<u>No Dirac cone</u> at K, a gap opens due to different electronegativity of C and Si

(see the talk of Paola Gori this afternoon...)

ABSORBANCE $A(\omega)$

• $A(\omega)=Wabs/Win$

• A(ω) related to $\varepsilon_2(\omega)$: A(ω)= $\omega/c *L*\varepsilon_2(\omega)$ with L distance between graphene layers

- $\varepsilon_2(\omega)$ Ab-initio: no experimental input
- no a-priori knowledge of the band dispersion

Our (numerical) method

• Density Functional Theory

Hohenberg Kohn 1964, Kohn and Sham 1965

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{e-ion} \bigstar \right) + \int d^3r' \frac{e^2}{|r-r'|} n \bigstar \right) \nabla_{xc} \bigstar \left(\varphi_{nk} \bigstar \right) = \varepsilon_{nk} \varphi_{nk} \bigstar \left(\varphi_{nk} \bigstar \right)$$

• Fermi Golden Rule

$$A(\omega) = \frac{\omega}{c} L \cdot Im\epsilon(\omega) = \frac{8\pi^2 \omega}{c} \frac{1}{A} \sum_{c,v} \sum_{\boldsymbol{k}} |M_{cv}(\boldsymbol{k})|^2 \,\delta(\varepsilon_c(\boldsymbol{k}) - \varepsilon_v(\boldsymbol{k}) - \hbar\omega)$$

$$M_{cv} = \frac{\langle c\vec{k} \mid \hat{e} \cdot \vec{p} \mid v\vec{k} \rangle}{\varepsilon_{c}(\vec{k}) - \varepsilon_{v}(\vec{k})}$$

Ingredients: ab-initio single particle eigenvalues and eigenstates

optical properties: challenging numerical treatment

high accuracy for low transition energies = many \mathbf{k} -points close to Diracpoints

hybrid mesh strategy:

- 1) 400x400 **k**-points in Brillouin zone for optical spectra above 0.5 eV
- refined grid close to Diracpoint (≈ 13k k-points) for optical spectra below 0.5 eV

→ low energy limit of absorbance converged to 4 digits

~13000 k points in IBZ!!!!

What we neglect:

- Many body effects in the band structure
- Excitonic effects in the optical properties But: for ω ->0 negligible!

See Louie PRL 2009

with and without e-h interaction

Only vertical transitions

0,026

Graphene: 0.02293 Silicene : 0.02290 Germene: 0.02292

Independent on:

- •Group IV atoms
- Buckling
- •Fermi velocity

germanene Dirac fermions ($\pi\alpha$): 0.022925

graphene

silicene

Van Hove singularities:

Van Hove singularities:

Analytic derivation

$$\langle c; \boldsymbol{k} | \boldsymbol{p} | v; \boldsymbol{k} \rangle \approx \langle v; \boldsymbol{k} | \boldsymbol{p} | v; \boldsymbol{k} \rangle = \frac{m}{\hbar} \nabla_{\boldsymbol{k}} \epsilon_{v}(\boldsymbol{k})$$

$\approx m v_F$

→ independent of k near K, K'

FIG. 4. (Color online) Wave-function squares in silicene for the highest occupied state (a) and the lowest unoccupied state (b) at K. The atomic positions in the isolated Si sheet are indicated.

Analytic derivation

$$A(\omega) = \frac{8\pi^2 \omega}{cA} \sum_{c,v} \sum_{\mathbf{k}} |M_{cv}(\mathbf{k})|^2 \,\delta\left(\varepsilon_c(\mathbf{k} - \varepsilon_v(\mathbf{k}) - \hbar\omega\right) \quad \text{Fermi Golden rule}$$

$$A(\omega) = \frac{\alpha \hbar}{m^2 \omega} \int_{BZ} d^2 \mathbf{k} \sum_{j=x,y} |\langle +\mathbf{k} | p_j | - \mathbf{k} \rangle|^2$$

 $\times \delta \left(\varepsilon_{+}(\mathbf{k}) - \varepsilon_{-}(\mathbf{k}) - \hbar \omega \right).$

+ =conduction band- =valence band

$$\sum_{j=x,y} \left| \langle +\mathbf{k}_0 | p_j | - \mathbf{k}_0 \rangle \right|^2 = (mv_F)^2 \quad \text{around K, K'}$$

$$A(\omega) = 2\frac{\hbar v_F^2}{\omega} \alpha \int d^2(\Delta \mathbf{k}) \delta(2\hbar v_F |\Delta \mathbf{k}| - \hbar \omega)$$
 Simple integral

$$A(\omega) = 2 \frac{\hbar v_F^2}{\omega} \alpha \frac{\pi \omega}{2 \hbar v_F^2} = \pi \alpha. \qquad \text{Univ}$$

Universal behavior

Gauge invariance

FIG. 5. (Color online) The frequency-dependent absorbance for (a) graphene, (b) silicene, and (c) germanene. Besides the longitudinal gauge (2) (black solid line) also the transversal gauge (3) (red dashed line) has been used.

$$M_{cv}(\mathbf{k}) = \lim_{\mathbf{q} \to 0} \frac{e}{|\mathbf{q}|} \langle c; \mathbf{k} \left| e^{i\mathbf{q} \cdot \mathbf{r}} \right| v; \mathbf{k} + \mathbf{q} \rangle$$

$$M_{cv}(\mathbf{k}) = \frac{e\hbar}{m} \frac{\left\langle c; \mathbf{k} \left| \frac{\mathbf{q}}{|\mathbf{q}|} \mathbf{p} \right| v; \mathbf{k} \right\rangle}{\varepsilon_c(\mathbf{k}) - \varepsilon_v(\mathbf{k})}.$$

Longitudinal gauge

Transverse gauge

Conclusions

- "Opacity" of the 2D honeycomb crystals graphene, silicene, and germanene *ab-initio calculations within the independent particle* approach.
- ω ->0 A(0) = $\pi \alpha$ as predicted for massless Dirac fermions.
- isotropic linear band structure (K, K') Dirac points +optical interband matrix elements related to the Fermi velocity v_F of the 2D material
- Independent of the longitudinal or transverse gauge of the electromagnetic field and *universal* for all group-IV crystals independent of the value of v_F, the degree of sp² and sp³ hybridization, and the sheet buckling.
- For higher frequencies the absorbance spectra start to deviate significantly with the group-IV material.

Future work

 Inclusion of Many-Body (GW) effects for a refined calculation of the Fermi velocity in silicene and germanene

• Effect of substrate (silicene on Ag(111))

Thanks to:

• Lars Matthes (Clermont4 PhD Roma-Jena)

• Paola Gori (CNR-ISM, Roma)

• Friedhelm Bechstedt (IFTO Jena, Germany)

Next call for projects: deadline 19 April

Thank you for your attention

http://www.etsf.eu

olivia.pulci@roma2.infn.it