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Memory cell in electronics and spintronics 

«1» is storing 

«0» is storing 

Spatial transfer of charge - 
• needs the time 
• Joule heating 

No spatial transfer of charge – 
1) higher work frequency 
2) no Joule heating 
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The carrier scattering in QDs 
The study of carrier spin dynamics  

of quantum confined objects in heterostructures,  
in particular, in quantum dots - 

- one of the main tasks of spintronics  
 

Main mechanisms of carrier scattering  
“working” in the bulk semiconductors 

are eliminated in QDs  
due to the carrier localization. 
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The role of hyperfine interaction 
  

From other side, due to the same carrier localization  
the electron spin dynamic in QDs  

is dependent on the hyperfine interaction  
of electron and nuclear spins 

more than in bulk semiconductors. 
 

Results of our recent study of the effect  
of hyperfine interaction on spin dynamic in QDs  

are briefly reviewed in this report. 
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Quantum Dots = “artificial atoms” 

Semiconductor heterostructure 
with quantum dots ensemble –  
nanocrystals in the bulk 
“barrier” semiconductor with 
broader forbidden gap Eg 

Single ZnSe quantum dot in broader-band 
environment (semiconductor, glass, liquid etc) 

Three-dimensional (3D) potential well with the size ~ de Broglie  wavelength => 
 
=> electronic levels in quantum dots are well resolved in energy (!) 

 

--> 
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Single InGaAs/GaAs quantum dot 

Single quantum dot spectroscopy – the particular field of research 

(J.P. McCaffrey, NRC Ottawa) 

GaAs 

GaAs 

InGaAs 
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InP QD in external electric field 

n-GaAs 
GaAs 

InP QDs 

InGaP 

ITO 

d ~ 40 nm 
h ~ 5 nm 

U
 
ITO 

InGaP 

GaAs 

n-GaAs 

InGaP InP QD 

QDs density ~ 1010 cm-2 (AFM); 
E

e 
E

h 

E
12

 

Ee ~ 230 meV; 
E12 ~ 10 – 20 meV  
Eh ~ 15 meV; 

Subject of the study: InP/InGaP QD ensemble 
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Subject of study: 
 (In,Ga)As/GaAs QDs ensemble 

n-δ-modulation  
doped sheets of Si 

20 layers of  
(In,Ga)As QD’s 

Barriers of 
GaAs  

•Annealing at T  
from 900 °C to 980°C 
 
•Every QD with one on 
average a single resident 
electron 
 

• Reference samples have 
no δ-doped sheets => 
QDs don’t contain resident 
electrons  
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Sample annealing 

M.Yu. Petrov et al. PRB (2008) 
As grown:  
      20 layers of InAs QDs 
      in GaAs  
Post growth annealing: 
      InAs → InGaAs 
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PhotoLuminescence (PL) characterization  
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Statistic distribution of QDs size and composition in the ensemble under study  
leads to the inhomogeneous broadening of QD emission bands in PL spectra 

20 layers of InGaAs QDs 
with areal density ρ~1010 cm-2 

IWPE 2.4.2013 13 



Outline 
Introduction.   
I. Subject of study –  
  - trion photoluminescence (PL) of quantum dots (QDs) ensemble 
II. Negative circular polarization (NCP)  
     of InP and InAs QDs trion photoluminescence itself 
        and as a method of spin polarization study  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ 
 

III. Long-lived spin polarization of resident electron in QDs  
 

IV. Hyperfine interaction of electron and nuclear spins in QD 
 

V. Time-resolved Hanle effect in QDs ensemble 
 

Ad: Optical Detection of Nuclear Magnetic Resonance (ODNMR)  
  at the QDs ensemble IWPE 2.4.2013 14 



σ+ excitation by circularly 
polarized light 

Trion (exciton + 
resident electron) 

Exciton 

Neutral QDs Negatively charged QDs 

σ+ photoluminescence 

σ - photoluminescence 

Sample 
PhotoLuminescence (PL) 

z 

I+
PL I-

PL 

We studied ρc
PL - degree of the PL circular 

polarization:  
         Is

PL – Io
PL 

ρc
PL = ------------- 

  Is
PL + Io

PL 
 

in dependence on hνdet (spectra)  
and on time delay after exciting light pulse 

(kinetics).  
 

Is(o)
PL - the intensity of the PL component with 

the same (opposite) helicity* as that of the 
excitation beam 

Sz
e
 = -1/2 

Sz
hh

 = 3/2 

Sz
e = 1/2 

Sz
hh = -3/2 

*Helicity – sign of circular polarization degree 
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Circularly polarized PL of InP QDs 
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Power dependence of NCP kinetics 

Power dependence of NCP value demonstrates  
the rise of orientation of resident electron spins. 
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Dependence of NCP on applied bias 
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PL spectra polarization of uncharged InGaAs QDs  
(non-doped heterostructure) 
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I. Degree of circular polarization of PL:  
a) is positive for 
a1) the emission of neutral QDs and 
a2) the emission from excited states of singly negative charged QDs 

 
b) is negative for emission from ground states of singly negative charged QDs 
at the excitation to the excited states or to wetting layer  
 
II. Absolute value of NCP degree increases with the excitation power  
(up to 75-80 % for PL kinetics of InGaAs QDs) 

Polarization properties of InGaAs and InP QD PL 
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Negative circular polarization at similar conditions  
has been found earlier in InP quantum dots 
(Dzhioev et al., Phys. Solid State, 40, 1587 (1998))  
but the model of its appearing proposed there  
does not explain experimental results mentioned above: 
 
dependences on excitation energy and power 
 
InAs quantum dots: S.Cortez et al., Phys. Rev. Lett., 89, 207401 (2002)  
 
GaAs quantum dots : S.Bracker et al., PRL 94, 047402 (2005) 
A. Shabaev et al., Phys. Rev. B 79, 035322 (2009) 

Observation of NCP 
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Model of NCP appearing 

σ+- excitation σ– - polarized PL 

Flip-flop of  
electron  
and hole 

spins 

P-type QD P-type QD 

• if resident electron spin is parallel to photogenerated electron spin (P-type QD), 
PL polarization is negative 
• reversal of polarization sign is the result of flip-flop of spins of electron and hole 
due to their exchange interaction 

Our model is based on the mechanism proposed by K.V.Kavokin and published in  
phys.stat.sol.(a) 195, 592 (2003) 
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Spin polarization mechanism 

• If probability of spin-flip of photogenerated hole is equal q, 
then the probability of A-type QDs conversion to P-type QD is equal q too  

A-type QD 
σ+-excitation 

σ+-PL 

σ--PL 

A-type QD 

P-type QD 

energy 
relaxation 

only 

Energy relaxation 
and hole spin-flip  

q 

1-q 
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Role of conservation  
of resident electron spin orientation 

Conditions when NCP appears 
1) Photogeneration of electron and hole at excited states  
of A-type and P-type QDs by circularly polarized light 
  

2) After carrier relaxation to QD ground states  
and their recombination  
the relative number of P-type QDs increases 
 

3) The rise of absolute value of NCP degree with excitation 
power means the accumulation of P-type QDs 

 

4) Such accumulation is possible only at the conservation  
of resident electron spin orientation  
at least to the next pulse of exciting light  
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For InP QDs: 
γPL = (250 ps)-1, 
F = γPL + γff = (48 ps)-1, 
R = γPL + γrel + γh = (32 ps)-1 

ANCP = nA(1-2q) – nP 
nA – part of A-type QDs; 
nP – part of P-type QDs; 
(nA + nP = 1). 

In our experiments: 
q ~ 0.05 – 0.10  
At low temperatures 
and excitation powers 
ANCP ~ - (nP – nA) = -S 

I.V.Ignatiev et al.,  
Opt. Spec. 106, 375–387 (2009) 

Use of NCP for evaluation of resident spin polarization  
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Two-beam set-up 

PEM 

MC 

PEM – photoelastic modulator  MC – alternate chopper 
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Spin memory of InGaAs QDS  

•Long-time (up to ~102 ms) spin memory of resident electrons  
at the absence of external magnetic field 

•What is the role of hyperfine interaction with nuclear spins in QDs? 

T = 2K 

t ∆t ∆t ∆t ... ... 

dark 
time 

dark 
time 

dark 
time 

NCP measuring during probe 2 

Pump 1 
σ − 

probe 2 
σ+ 

pump 1 
σ − 

t 

∆t 

∆t ∆t ... 

dark 
time 

dark 
time 

dark 
time 
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105 

nuclei 

Hyperfine interaction  
of electron and nuclear spins 

electron 

Knight field 

Overhauser field BN 
~ 10 mT-10 T 
of Dynamic 

Nuclear 
Polarisation (DNP) 

~105 nuclei 
Electrons have s-type wave 

function in ground state 

Be ~ 1 mT Polarized 
light 

Knight field 

DNP is only one of the possible 
mechanisms ruling the Nuclear 
Spin Polarization (NSP) IWPE 2.4.2013 36 



Fluctuations ΔIN of total nuclear spin IN in QDs  - 
- other type of possible NSP 

Bf || s 

   Bf   s ┴ 

Fluctuations of ΔIN influence on the electron spin in КТ, when external field Bext < Bf 

Bf 

Bext 

Theoretical estimations of periods:  
electron spin precession in the field of “freezed” nuclear spins fluctuation   ~ 1 нс  
nuclear spin precession in the Knight field created by the electron spin              ~ 1 мкс 
nuclear spin relaxation at their dipole-dipole interaction               ~ 100 мкс 

[Theory: Merkulov et al. PRB, (2002)]. 
 ΔIN / IN ∝ √n (n ~ 105 in QDs under study) 
Fluctuations ΔIN influence on the electron spin as effective magnetic field Bf   
with incidental value and direction through the QDs ensemble. 
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Measurement of NCP of QDs PL  
as an instrument to study hyperfine interaction in QDs 

• Electron spin optically oriented  
by circularly polarized light polarises nuclear spins. 

 

• The orientation of latter ones (NSP)  
may support or destroy electron spin polarisation. 

 

• The NSP may be researched via its influence  
on electron spin polarisation  

studied by measurement of NCP of QDs PL 
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Two configurations of external magnetic field 

Voigt configuration 
  

Magnetic field  Bext (X-axis) is 
perpendicular to optical axis (Z) 
(and to electron spin oriented  
by circularly polarized light; 
to direction of QD structure 
growth; 
to grad(F) of electrical field; 
to NSP┴) 
 

The NSP|| component is parallel 
to Bext (X-axis) in this case.  
 
 

Faraday configuration 
  
Magnetic field  Bext is 
parallel to optical axis (Z) 
(and to electron spin oriented by 
circularly polarized light; 

 

to direction of QD structure growth; 
 

to grad(F) of electrical field;  
 

to DNP (NSP||) ) 
 

Z (Optical axis) 

X (Bext) 
 

Y (RF field) IWPE 2.4.2013 39 
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Influence of two components of NSP  
on resident electron spin polarization  
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Influence of two components of NSP  
on resident electron spin polarization 

(<Bf
2 >)1/2 ≈ 15 mT is practically independent on excitation power. 

(the helicity of PL polarization is marked here relatively to exciting light helicity) 
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«Usual» Hanle effect 
(Voigt configuration) 
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is explained by Paget et al., PRB (1977)  
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•Tilting the nuclear field BN  
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•Reducing the pumping rate of BN 
with tilting 

Hanle effect in NCP 
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Hanle effect influenced  
by nuclear spin polarization 
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Set-up for the time-resolved Hanle effect study 
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Rise of nuclear polarisation 
 measured by time-resolved Hanle effect 

Time evolution of NCP degree  
measured at external field strength  
equal to 2 mT and to 50 mT  
allows us to analyze rise-times 
of nuclear polarization components 
parallel (NSP||) and perpendicular (NSP┴)  
to external magnetic field direction. 
 
NSP|| and NSP┴ are ┴ and ||  
to the optically oriented electron spin. 
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Relaxation of nuclear polarisation 
 measured by time-resolved Hanle effect 

Time evolution of NCP degree  
measured at external field strength  
equal to 2 mT and to 50 mT  
allows us to analyze times of relaxation 
of nuclear polarization components 
parallel (NSP||) and perpendicular (NSP┴)  
to external magnetic field direction. 
 
NSP|| and NSP┴ are ┴ and ||  
to the optically oriented electron spin. 
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Nuclear Spin Polarization (NSP) influence  
on electron spin polarization – two opposite results: 

W-range of Hanle curves (Bext < 50 mT) –  
 - the electron spin polarization is destroyed by NSP =>  
 => nuclear spins are polarized parallel to Bext  
and are perpendicular to the electron spin so. 

 
Wings of Hanle curves (Bext > 50 mT ) –  
 - the electron spin polarization is stabilized by NSP =>  
 => nuclear spin polarization has the component  
parallel to the electron spin (and perpendicular to Bext) 
 
It has allowed us to define firstly 
the time behaviour of these two components of NSP separately. 
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Time behavior of two components 
of dynamic nuclear polarization 

Field dependences of times  
a) of rise 
b) of relaxation  
of nuclear polarization component 

perpendicular  
to external magnetic field direction 

Times of rise and of relaxation of nuclear polarization component parallel 
to external magnetic field direction are nearly of 5 ms  
and independent from external magnetic field strength 

Such behavior of nuclear polarization could not be explained  
in the frame of existing phenomenological models  
and demands to develop new theoretical approach 
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Conclusion 
Spin carrier dynamics in QDs is dependent  

from hyperfine interaction 
between electron and nuclear spins. 

 

At the analysis of dynamics of hyperfine interaction  
it is necessary to concern dynamics not only of parallel  

but also of perpendicular component 
of Nuclear Spin Polarisation. 

 

It is a challenge for developing  
of new theoretical approaches. 
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Outline 
Introduction. 
I. Subject of study –  
  - trion photoluminescence (PL) of quantum dots (QDs) ensemble 
II. Negative circular polarization (NCP)  
     of InP and InAs QDs trion photoluminescence itself 
        and as a method of spin polarization study  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ 
 

III. Long-lived spin polarization of resident electron in QDs  
 

IV. Hyperfine interaction of electron and nuclear spins in QD 
 

V. Time-resolved Hanle effect in QDs ensemble 
 

Ad: Optical Detection of Nuclear Magnetic Resonance (ODNMR)  
   at the QDs ensemble IWPE 2.4.2013 52 



Hanle curves at the modulation  
of exciting light polarization 

Moreover weak magnetic field  
along the direction of excitation 
has been additionally applied: 
  
fresh results are presented at  
M. S. Kuznetsova et al., 
http://arxiv.org/abs/1303.4192 
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Resonances 
σ+ 

σ- 

Resonances shift to the larger field strength  
at the rise of modulation frequency of exciting light polarisation! 
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Measurements at modulation of optical excitation 
and at application of radiofrequency (RF) 

• CW optical orientation of the electron spins  
    influences on the nuclear spin orientation too 
 
• External magnetic field also influences  
    on both the electron and nuclear spins 
 
• Exciting light with modulated polarization 
   or application of radiofrequency field (RF)  
  influence on nuclear spins only 
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ODNMR experiments in heterostructures with QDs 

The ODNMR has been observed by single QD spectroscopy  
of unstrained GaAs/AlGaAs heterostructures  
(D.Gammon et al., Science 277, 85 (1997), M.N.Makhonin et al., arXiv:1002.0523v2 (unpublished).) 
 
The heterostructure with InGaAs/GaAs QDs under study: 
1) has much more (~1010 cm-2) density of QDs 
2) is strained due to the crystal lattice mismatch between InGaAs and GaAs 

 
The both properties are more real for the future applications but 
it is impossible to study single QD at such high density. 
 
In result we have studied the ensemble of strained InGaAs/GaAs QDs  
where effect of the inhomogeneous broadening is considerable 
 
The disordered strain leads to the gradient ∇F of electric field  
who splits the nuclear spin states into Kramers doublets |+m/2>  
(nuclear quadrupole splitting) 
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Influence of uniaxial deformation of QD 

Direction of main axis  
of deformation tensor  
is shown by arrows.  
 
Points wth equal concentration 
of In atoms are shown by lines. 

εzz(max) = 0.0117 
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The sample holder with RF coils 

1 cm 
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RF influence on Nuclear Spin Polarization (NSP)  

W-range of Hanle curves (Bext < 50 mT) –  
 - the electron spin polarization is destroyed by NSP =>  
 => nuclear spins are polarized perpendicular to the electron spin 
and parallel to Bext => destroying of NSP|| by rf application increases 
the electron spin polarization 
 
 
Wings of Hanle curves (Bext > 50 mT ) –  
 - the electron spin polarization is stabilized by NSP =>  
 => nuclear spin polarization has the component NSP┴ 
parallel to the electron spin and perpendicular to Bext => destroying of 
NSP ┴ by rf application decreases the electron spin polarization 
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Resonances in the W–range of Hanle curves 
Solid and dashed lines – calculation with and  
without the influence of quadrupole interaction 

•Resonances in small Bx are due to the transitions between |±1/2> states  
of  71Ga and 75As 
The applied radio frequencies are much smaller than quadropole ones, νQ 
(hundreds of kHz) 
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Effect of synchronization  
of RF pump and of polarisation modulation 

fPM=67 kHz 

B 

σ+ 

RF 

σ+ 

σ- 

RF
R.V.Cherbunin et al.,  
Phys. Rev. B, 84, 041304 (2011). 
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Nuclear quadrupole splitting 

 
• The appearance of the nuclear spin component parallel to the electron spin  

is the result of nuclear quadrupole splitting  
(R. I. Dzhioev and V. L. Korenev, Phys. Rev. Lett. 99, 037401 (2007))  

for nuclear spins with I =  |+m/2> (m ≥ 3) at electric field gradient ∇F. 
 
 
 

•Zeeman splitting becomes comparable with hνQ in the range  
from 27 mT (71Ga) to 200 mT (75As) 

 
• The main reason for the gradient is the disordered strains   

of the interface between QD and barrier  
• The strain is the result of the difference between QD and barrier lattice constants. 

Isotope 69Ga 71Ga 75As 113In 115In 

I 3/2 3/2 3/2 9/2 9/2 

νQ, kHz (for 
εzz=0.01) 

564 353 1490 388 383 
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